JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTHAPURAMU COLLEGE OF ENGINEERING (AUTONOMOUS):: PULIVENDULA

Course Code	:	15ACS12	5ACS12					
Course Title	:	Database	atabase Management System					
Course Structure		Lectures	Tutorials	Practicals	Credits			
Course Structure	•	3	1	0	3			
Course Coordinator	:	Miss. S. G	Iiss. S. Ghouhar Taj					
Team of Instructors	:	Mr. G. Mu	Ir. G. Murali					

I. Course Overview

This introductory application-oriented course covers the relational database systems RDBMS - the predominant system for business, scientific and engineering applications at present. The topics are reinforced using tools such as Oracle or MS SQL Server in labs. The course includes Entity-Relation model, Normalization, Relational model, Relational algebra, and data access queries as well as an introduction to SQL.

II. Prerequisite(s):

Level	Credits	Periods / Week	Prerequisites
UG	3	4	Database Introduction

III. Assessment:

FORMATIVE ASSESMENT				
Mid Semester Test I for 20 Marks in first 2 units is conducted at8 the end of 9 th week.				
Mid Semester Test II for 20 Marks in last three units is conducted at the end of the course work.	20 Marks			
Average of two tests is taken as final				
Mid semester Test Multiple Choice Test in first two and half Units is conducted for 10 Marks	10 Marks			

Mid semester Test Multiple Choice Test in second two and half Units is conducted for 10 Marks	
Average of two tests is taken as final	
Total (Formative)	30 Marks
SUMMATIVE ASSESMENT	
End Semester Examination in all units is conducted for 70 Marks	70 marks
Grand Total	100 Marks

IV. Course objectives:

- 1. To create database and query it using SQL queries, design forms and generate reports.
- 2. Learn to use integrity constraints, referential integrity constraints, triggers, assertions

V. Course Outcomes:

- 1. Design databases
- 2. Retrieve information from data bases
- 3. Use procedures to program the data access and manipulation
- 4. Create user interfaces and generate reports

VI. Program outcomes:

Program Outcomes

- a An ability to apply knowledge of computing, mathematical foundations, algorithmic principles, and computer science and engineering theory in the modeling and design of computer-based systems to real-world problems (fundamental engineering analysis skills)
- b An ability to design and conduct experiments, as well as to analyze and interpret data (information retrieval skills)
- c An ability to design , implement, and evaluate a computer-based system, process, component, or program to meet desired needs, within realistic constraints such as economic, environmental, social, political, health and safety, manufacturability, and sustainability (Creative Skills)
- d An ability to function effectively on multi-disciplinary teams (team work)
- e An ability to analyze a problem, identify, formulate and use the appropriate computing and engineering requirements for obtaining its solution (engineering problem solving skills)
- f An understanding of professional, ethical, legal, security and social issues and responsibilities (professional integrity)
- g An ability to communicate effectively both in writing and orally (speaking / writing skills)
- h The broad education necessary to analyze the local and global impact of computing and engineering solutions on individuals, organizations, and society (engineering impact assessment skills)
- i Recognition of the need for, and an ability to engage in continuing professional development and life-long learning (continuing education awareness)
- j A Knowledge of contemporary issues (social awareness)
- k An ability to use current techniques, skills, and tools necessary for computing and engineering practice (practical engineering analysis skills)
- An ability to apply design and development principles in the construction of software and hardware systems of varying complexity (software hardware interface)
- m An ability to recognize the importance of professional development by pursuing postgraduate studies or face competitive examinations that offer challenging and rewarding careers in computing (successful career and immediate employment).

VII. Syllabus:

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTHAPURAMU

COLLEGE OF ENGINEERING (AUTONOMOUS):: PULIVENDULA Regulation –R15

B.Tech. IIYear –II Sem (C.S.E)

L T P C 3 1 0 3

Database Management Systems

UNIT I

The Worlds of Database Systems – file system VS a DBMS – Advantages of DBMS – Levels of abstraction in DBMS, Data Independency, Queries in DBMS

The Entity-Relationship Model – Database design and ER diagrams – Elements of ER models – Additional features ER models.

The Relational Data Model – Basics of the Relational Model –Integrity constraints over relations, From E/R Diagrams to Relational Designs – Introduction to views.

UNIT II

Relational Algebra and Calculus – Preliminaries, Relational algebra: Selection and Projection, Set Operations, Renaming, Joins, Division - Relational Calculus – Expressive power of Algebra and Calculus.

The Database Language SQL – Simple Queries in SQL –UNION, INTERSECT, EXCEPT–Nested queries, Aggregate operators.

UNIT III

Constraints and Triggers – Keys and Foreign keys – Constraints on Attributes and Tuples, Schemalevel

Constraints and Triggers.

Functional Dependencies – Rules about Functional Dependencies- Normal Forms based on FDs – 1NF, 2NF, 3NF, BCNF, Multivalve Dependencies, 4NF, 5NF.

UNIT IV

Transaction Management: Transactions, ACID properties, Serializability, Other isolation levels.

Concurrency Control – Serializability and Recoverability, Introduction to Lock management-Concurrency Control without Locking.

UNIT V

Index Structures – Indexes on Sequential Files – Secondary Indexes – B-Trees, B+ Trees – Hash Based Indexing.

Introduction to Query Optimization.

Crash Recovery: Introduction to ARIES- The Log- other Recovery- Related Structures-Checkpoints-Recovery from a System Crash.

VIII. List of Text Books / References / Websites / Journals / Others

Text Books:

- 1. "Database Systems, The Complete Book", Hector Garcia-Molina, Jeffrey D. Ullman and Jennifer Widom, 6th impression, 2011, Pearson.
- 2. "Data base Management Systems", Raghu Rama Krishnan, Johannes Gehrke, 3rd Edition, 2003, McGraw Hill.

Reference Books:

- 1. "Fundamentals of Database Systems", Elmasri Navrate, 6th edition, 2013, Pearson.
- 2. "Data base Systems design", Implementation, and Management, Peter Rob & Carlos Coronel 7th Edition.
- 3. "Introduction to Database Systems", C.J.Date, Pearson Education.
- 4. "Data base System Concepts", Silberschatz, Korth, McGraw Hill, V edition.

IX. Course Plan:

The course plan is meant as a guideline. There may probably be changes.

Date	Course Learning Outcomes	Topics to be covered	Reference
		UNIT I	
28-11-19(2) 29-11-19(1) 2-12-19(1)	The worlds of database	File system vs a DBMS, advantage of DBMS, levels of abstraction in DBMS, data independency, queries in DBMS	T1:1:1-19 T2:1:8-16 R4:1:36-86
5-12-19(2) 6-12-19(1)	The entity-relationship model	Database design and ER diagram, elements of ER model, additional features ER models	T1:2:26-40 T2:2:25-45 R2:4:105-125 R1:3:200-230
9-12-19(1) 12-12-19(2)	The Relational Data Model	Basics of the Relational Model – From E/R Diagrams to Relational Designs – introduction to views	T1: 3 :61-87 T2:3:57-94 R1: 3 :60-67
		UNIT-II	
13-12-19(1) 16-12-19(1) 19-12-19(2) 20-12-19(1) 23-12-19(1)	Relational Algebra and Calculus	Preliminaries, Relational algebra: Selection and Projection, Set Operations, Renaming, Joins, Division - Relational Calculus – Expressive power of Algebra and Calculus.	T1: 5 :189-203 T2: 4 :101-124 R1:6:147-183

	TOTAL 1	g: 1 0 : : got	TI (220 210
	The database language	Simple Queries in SQL –	T1: 6 :239-310
26-12-19(2)	SQL	UNION,INTERSECT,EXCEPT-nested	T2: 5 :131-165
27-12-19(1)		queries, aggregate operators	
30-12-19(1)			R2: 7 :225-280
2-1-20(2)			
2 1 20(2)			R1: 4 :87-110
3-1-20(1)		Practical session	
6-1-20(1)			
		UNIT-III	
9-1-20(2)	Constraints and Triggers	Keys and Foreign keys – Constraints on	T1: 7 :316-345
10-1-20(1)		Attributes and Tuples, Schemalevel-	T2: 3 :63-72
13-1-20(1)		Triggers& Constrains	
15 1 20(1)			
17-1-20(2)	Functional Dependencies	Rules about Functional Dependencies	T1:3:82-126
23-1-20(2)	Tunetional Bependencies	Design of Relational Database Schemas,	11.5.02 120
24-1-20(1)		Normal Forms based on FDs – Multivalued	T2:19:611-
24-1-20(1)		Dependencies, 4NF, 5NF	
			640
			DO 5 170
			R2: 5 :173-
			176
27-1-20(1)	Gate lectures on normal		
30-1-20(2)	forms		
		UNIT-IV	
31-1-20(1)	Transaction Management	Transactions, ACID properties,	T1: 8 :397-403
3-2-20(1)		Serializability, Other isolation levels.	T2: 16 :519-
6-2-20(2)		• •	525
7-2-20(1)			323
7-2-20(1)			R2: 10 :413-
10.2.20(1)	Commence Control	C - 1 - 1 11/ 1 1 11/-	430
10-2-20(1)	Concurrency Control	Serializability and recoverability,	T2: 17 :549-
13-2-20(2)		introduction to lock management,	572
14-2-20(1)		concurrency control without locking	
17-2-20(1)			R2: 22 :778-
			800
20-2-20(2)		Gate Lectures	
24-2-20(1)			
		UNIT-V	
27-2-20(2)	Index Structures	Indexes on Sequential Files – Secondary	T1: 13 :605-
28-2-20(1)		Indexes – B-Trees, B+ Trees – Hashing.	657
2-3-20(1)			
5-3-20(2)			T2: 10 :358-
6-3-20(1)			364
9-3-20(1)			
12-3-20(1)	Introduction to Query	introduction to ARIES, the log-other	T1:18:580-
, ,	Optimization	recovery, related structure, checkpoint,	
13-3-20(1)	Spaninzation	recovery from a system crash	590
16-3-20(1)		1000 vory from a system crash	T2.19.592
			T2:18:582-

	5	595
		R1: 23 :808-
19-3-20(2)	Revision and Gate lectures	
19-3-20(2) 20-3-20(1)		
23-3-20(1)		

X. Mapping course outcomes leading to the achievement of the program outcomes:

Course													
Outcomes	a	В	c	d	E	F	g	h	i	j	k	l	m
1		S	S		Н	S							S
2			S			H							S

S = Supportive

H = **Highly Related**

Justification of Course syllabus covering Course Outcomes:

By covering the syllabus a student can understand the designing of algorithm and flowcharts. Student is able to develop applications using C Program Constructs.

Justification of CO's –PO's Mapping Table:

By mapping CO-1 to the PO's B which are related to the course CO1: The student is able to analyze and design the problem.

By mapping CO-1 to the PO's C, which are related to the course CO1: The student is able to Implement the Problem and evaluate computer-based system program to meet.

By mapping CO-1 to the PO's E, which are related to the course CO1: The student is able to identify, formulate and use the appropriate computing and engineering requirements.

By mapping CO-1 to the PO's F, which are related to the course CO1: the student is able to understanding of professional, ethical, legal, security and social issues.

By mapping CO-1 to the PO's M, which are related to the course CO1: the student is able to recognize the importance of professional development by facing competitive examinations that offer challenging and rewarding careers in computing.

By mapping CO-2 to the PO's C, which are related to the course CO2: The student is able to understand the constrains, Develop the creative skills & Provides Security and Successful Carrier

By mapping CO-2 to the PO's F which are related to the course CO3: The student is able to understands professional, ethical, legal, security and social issues and responsibilities

By mapping CO-2 to the PO's M which are related to the course CO3: The student is able to understand the professional development by facing competitive examinations.