
JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS): PULIVENDULA

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

B.Tech III Year II Semester

SUBJECT: COMPILER DESIGN (CD)

LESSON PLAN

Course Code 15ACS24

Course Title COMPILER DESIGN

Course Structure
Lectures Tutorials Practical’s Credits

3 1 0 3

Course Coordinator Smt C.Prabhavathi

Team of Instructors Sri G. Murali

I. Course Overview:

The course is intended to teach the students the basic techniques that underlie the

practice of Compiler Construction. The course will introduce the theory and tools that

can be tenderly employed in order to perform syntax-directed translation of a high-

level programming language into an executable code.

These techniques can also be employed in wider areas of application, whenever we

need a syntax-directed analysis of symbolic expressions and languages and their

translation into a lower-level description. They have multiple applications for man-

machine interaction, including verification and program analysis.

In addition to the exposition of techniques for compilation, the course will also discuss

various aspects of the run-time environment into which the high-level code is

translated. This will provide deeper insights into the more advanced semantics aspects

of programming languages, such as recursion, dynamic memory allocation, types and

their inferences, object orientation, concurrency and multi-threading.

II. Prerequisite(s):

III. Assessment:

FORMATIVE ASSESMENT

Mid Semester Test I for 20 Marks in first 2 units is conducted

at the end of 9th week.

Mid Semester Test II for 20 Marks in last three units is

conducted at the end of the course work.

80% Marks taken from the test which secured highest marks

20 Marks

Level Credits Periods / Week Prerequisites

UG 3 3
Mathematical background, Logical Thinking,

Automata Theory and Problem solving techniques

and 20% marks from the other test is taken as final

Multiple Choice Mid Semester Test I for 10 Marks form first 2

units is conducted at the end of 9th week.

Multiple Choice Mid Semester Test II for 10 Marks fromlast3

units is conducted atthe end of the course work.

80% Marks taken from the test which secured highest marks

and 20% marks from the other test is taken as final

10 Marks

 Total (Formative) 30 Marks

SUMMATIVE ASSESMENT

End Semester Examination in all units is conducted for 70

Marks
70 marks

 Grand Total 100 Marks

IV. Course Objectives:
1. Realize that computing science theory can be used as the basis for real applications

introduce the major concept areas of language translation and compiler design. Learn
how a compiler works.

2. Know about the powerful compiler generation tools and techniques, which are useful

to the other non-compiler applications.
3. Know the importance of optimization and learn how to write programs that execute

faster.

V. Course Outcomes:

1. Student can able to design a compiler for a simple programming language.
2. Student can able to use the tools related to compiler design effectively and efficiently can

write an optimized code.

VI. Program outcomes:

a An ability to apply knowledge of computing, mathematical foundations, algorithmic principles, and

computer science and engineering theory in the modeling and design of computer-based systems to

real-world problems (fundamental engineering analysis skills)

b An ability to design and conduct experiments, as well as to analyze and interpret data (information

retrieval skills)

c An ability to design , implement, and evaluate a computer-based system, process, component, or

program to meet desired needs, within realistic constraints such as economic, health and safety,

manufacturability, and sustainability (Creative Skills)

d An ability to function effectively on multi-disciplinary teams (team work)

e An ability to analyze a problem, identify, formulate and use the appropriate computing and

engineering skills for obtaining its solution (engineering problem solving skills)

f Obtaining the knowledge of algorithmic skills regarding data structures. (program oriented skills)

g An ability to communicate effectively both in writing and orally (speaking / writing skills)

h The broad education necessary to analyze the local and global impact of computing and engineering

solutions on individuals, organizations, and society (engineering impact assessment skills)

i Recognition of the need for, and an ability to engage in continuing professional development and

life-long learning (continuing education awareness)

j A Knowledge of structural skills which are related to theoretical skills for programming (detailed

subject oriented skills).

k An ability to use current techniques, skills, and tools necessary for computing and engineering

practice (practical engineering analysis skills)

l An ability to apply design and development principles in the construction of software and hardware

systems of varying complexity (software hardware interface)

m An ability to recognize the importance of professional development by pursuing postgraduate studies

or face competitive examinations that offer challenging and rewarding careers in computing

(successful career and immediate employment).

VII. Syllabus:

COMPILER DESIGN

 L T P C

 3 1 0 3

UNIT – I
Overview of Compilation and Language processing:Preprocessor-Compiler-assembler-
interpreters-pre-processors-linkers and loaders-structure of a compiler- Phases of Compilation–
Lexical Analysis, Regular Grammar andregular expression for common programming language
features, pass and Phases of translation, interpretation, bootstrapping, data structures in
compilation – LEX lexical analyzer generator.

UNIT – II
Top down Parsing: Context free grammars, Top down parsing–Backtracking, LL (1), recursive
descent parsing, Predictive parsing, Preprocessing steps required for predictive parsing.
Bottom up Parsing: Shift Reduce parsing, LR and LALR parsing, Error recovery in parsing,
handling ambiguous grammar, YACC – automatic parser generator.

UNIT – III
Semantic analysis: Intermediate forms of source Programs–abstract syntax tree, polishnotation

and three address codes. Attributed grammars, Syntax directed translation, Conversion of popular

Programming languages language Constructs into Intermediate code forms, Type checker.

UNIT – IV
Symbol Tables: Symbol table format, organization for block structures languages, hashing, tree
structures representation of scope information. Block structures and non block structure storage
allocation: static, Runtime stack and heap storage allocation, storage allocation for arrays, strings
and records.
Intermediate code Generation: Intermediate languages, Declarations, Assignment statements,
Boolean expressions, back patching.
Code optimization: Consideration for Optimization, Scope of Optimization, local optimization,
loop optimization, frequency reduction, folding, DAG representation.

UNIT – V
Data flow analysis: Flow graph, data flow equation, global optimization, redundant sub
expression elimination, Induction variable elements, Live variable analysis, Copy propagation.
Object code generation: Object code forms, machine dependent code optimization, register
allocation and assignment generic code generation algorithms, DAG for register allocation.

TEXT BOOKS:

1. Principles of compiler design -A.V. Aho .J.D.Ullman; Pearson Education. (Text book edition)

2. Modern Compiler Implementation in C- Andrew N. Appel, Cambridge University Press.

3. Compilers Principles, Techniques and Tools-Alfred V.Aho, Ravi Sethi, JD Ullman, Pearson

Education, 2007.

REFERENCES:

1. lex&yacc – John R. Levine, Tony Mason, Doug Brown, O’reilly.

2. Modern Compiler Design- Dick Grune, Henry E. Bal, Cariel T. H. Jacobs, Wiley dreamtech.

3. Engineering a Compiler-Cooper & Linda, Elsevier.

4. Compiler Construction, Louden, Thomson.

VIII. Course Plan:

The course plan is meant as a guideline. There may probably be changes.

Lecture

No.
Date

Course Learning

Outcomes
Topics to be covered Reference

UNIT – I

1
28-11-19(1)

29-11-19(1)

Phases of

compilation

Introduction to compiler

design
T1:1,T2:1.6,R1:1.4

2 3-12-19(2) Lexical analysis
Concepts of compiler

design
T1:1.1,R2:1.5

3
5-12-19(1)

6-12-19(1)
Regular grammar

Explanation about

regular grammar

expressions

T1:1.2,R2:1.7,R3:1.5

4 10-12-19(2)
Pass and phases of

translation.
Phases of compilation T1:1.3,T2:1.4

5
12-12-19(1)

13-12-19(1)
Lex lexical analyzer

Knowing the concept of

Lexical analyzer
T1:1.4,T2:2.2,T3:2.3

6 17-12-19(2)

List out the building

blocks of software

quality.

Architectural conception

in Absence of

Experience

T1:1.5,R1:2.4

UNIT - II

7
19-12-19(1)

20-12-19(1)

Context free

grammars

Writing Context free

grammars solutions
T2:2.2,T3:2.5,R3:2.6

8 24-12-19(2) Top down parsing
Important characteristics

of Top down parsing
T1:2.3,T2:2.7

9
26-12-19(1)

27-12-19(1)

Different types of

Parsers

Backtracking and LL(1)

parsers explanations
T1:2.4,T2:2.8

10 31-12-19(2)
Recursive descent

parsing

Knowing the solutions

for problems regarding

RDP

T1: 2.5,

T2:2.6,T3:2.9

11
2-1-20(1)

3-1-20(1)
Predictive parsing

Evaluating expressions

of predictive parser
T1:2.7,R1:2.6

12 7-1-20(2)
Preprocessing steps for

predictive parser.

Rules of predictive

parser
T1.3.1,T3:4.7,R2:3.2

13 9-1-20(1) Shift reducing Rules for shift reduce T1:3.2,R1:3.3

10-1-20(1) parsing. parser

14 14-1-20(2)
Definition of LR and

LALR parsing

Rules for LR and LALR

parsers
T1:3.3,T2:3.4

15
17-1-20(1)

23-1-20(1)

Error recovery in

parsing
Rules for error recovery T1:3.4,R3:3.6

16 24-1-20(1) Definition of YACC
Knowing the automatic

parser generator
T1:3.5-3.6-3.7,R2:4.1

UNIT - III

17 28-1-20(2)

Illustrate the

principles which

lead to abstract

syntax tree

Process of abstract

syntax tree
T1:3.8-3.9,R1:3.9

18
30-1-20(1)

31-1-20(1)
Three address code

Techniques for three

address code

T1:3.10,R1:3.12

19 4-2-20(2)
Describing attributed

grammars.

Explanation of attributed

grammars
T1.3.11-3.12,R3:4.7

20
6-2-20(1)

7-2-20(1)

Illustrate the Syntax

directed translation

Basic definitions of

syntax directed

translation

T1:4.1-4.2,R2:5.1

21 11-2-20(2)
Describing the type

checker

Basic definitions of the

type checker
T1:4.3,T3:4.6,R3:5.1

22
13-2-20(1)

14-2-20(1)

Describe the

Intermediate code

forms

Rules of intermediate

code forms
T1:4.4-4.5,R1:5.4

UNIT - IV

23 18-2-20(2)
Illustrate the Symbol

table format

Explanation about

symbol table
T1:4.6,T3:3.2,R1:3.8

24
20-2-20(1)

25-2-20(2)

Organization for

block structures

languages.

Definition of block

structures language
T2:6.2,R3:4.8

25
 27-2-20(1)

28-2-20(1)

Explanation of

building the

software engineering

teams.

Building software

engineering teams,

project scheduling and

tracking

T1:4.7-4.8,R2:6.2

26 3-3-20(2)
Describe the

Hashing
Hashing techniques T2:2.2,R1:3.6,R2:6.7

27
5-3-20(1)

6-3-20(1)
Code optimization

Consideration of

optimization techniques
T1:4.9,T2:5.1

28 10-3-20(2)
Scope of

optimization

Contents of

optimization.

T1:5.4,T2:4.2,R1:4.4

29 12-3-20(1)
Local and loop

optimizations.

Explanation of types of

optimizations.
T1:5.6,R2:6.3,T3:6.8

UNIT - V

30 13-3-20(1) Describe the Flow graph
Explanation about flow

graphs.
T1:5.7,R2:6.4,T3:6.7

31 17-3-20(2) Data flow equation
Rules regarding data

flow equation
T1:5.8,T3:4.2,R1:5.1

32 19-3-20(1)

Global optimization

redundant sub

expressions

Explanation of global

optimization techniques

and sub expressions

T1:6.1,T3:5.2,R1:5.9

33 20-3-20(1)

Introduction to

variable elements

and live variable

analysis

Explanation about live

variable analysis
T1:6.2,R1:5.2,R2:6.6

34 24-3-20(1)
Introduction to Copy

propagation

Explanation of copy

propagation
T1:6.4,T3:5.8,R1:6.2

35 24-3-20(1)
DAG for register

allocation
Explanation of DAG T1:6.5,T3:6.2,R2:6.7

IX. Mapping course outcomes leading to the achievement of the program

outcomes:

Course

Outcomes

Program Outcomes

a b c d e f g h i j k l m

1 H

S

H

H S

2 H S S

S

H

 S = Supportive H = Highly Related

Justification of Course syllabus covering Course Outcomes:

 By covering the syllabus a student can understand the major concepts are as of language

translation and compiler design. Student is able to develop the real time projects by using

powerful compiler generation tools and techniques.

 Justification of CO’s –PO’s Mapping Table:

1. By mapping CO-1 to the PO’s A, C, E,K, and L which are related to the course CO1:

Student canable to design a compiler for a simple programming language.

2. By mapping CO-2 to the PO’s A, B, C, E, and K, which are related to the course CO2:

Student can able to use the tools related to compiler design effectively and efficiently

hasbeenwrite an optimized code.

	I. Course Overview:
	The course is intended to teach the students the basic techniques that underlie the practice of Compiler Construction. The course will introduce the theory and tools that can be tenderly employed in order to perform syntax-directed translation of a hi...
	II. Prerequisite(s):
	IV. Course Objectives:
	V. Course Outcomes:
	VI. Program outcomes:
	VII. Syllabus:
	L T P C 3 1 0 3
	VIII. Course Plan:
	IX. Mapping course outcomes leading to the achievement of the program outcomes:

