
JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTHAPURAMU

COLLEGE OF ENGINEERING (AUTONOMOUS) :: PULIVENDULA

Regulation –R15

I. Course Overview

The main objective of the course is to help the students in understanding the process of

developing a software system from scratch and guiding them through the development

process by giving them the fundamental principles of system development. The course

will initiate students to the different software process models, project management,

software requirements engineering process, systems analysis and design as a problem-

solving activity, key elements of analysis and design, and the place of the analysis and

design phases within the system development life cycle.

II. Prerequisite(s):

Level Credits Periods/Week Prerequisites

UG 4 4 Awareness of different System

Software's and application Software's

III. Assessment:

FORMATIVE ASSESSMENT

Mid Semester Subjective Test I for 20 Marks in first 2 units

is conducted at8 the end of 9th week.

(Subjective paper shall contain 5 questions of 2marks and 3

question of 5marks,student has to answer 2 questions)

Mid Semester Objective Test I for 10 Marks in first 2 units

is conducted at8 the end of 9th week

20 Marks

10 Marks

Course Code : 15ACS21

Course Title : Software Engineering

Course Structure : Lectures Tutorials Practical's Credits

4 0 0 4

Course Coordinator : Miss S. GHOUHAR TAJ

Team of instructor : Mr. G. Murali

(Objective paper is set for 20 bits)

Total

30 Marks

Mid Semester Subjective Test II for 20 Marks in first 2

units is conducted at the end of the course

(Subjective paper shall contain 5 questions of 2marks and 3

question of 5marks,student has to answer 2 questions)

Mid Semester Objective Test II for 10 Marks in first 2

units is conducted at the end of the course

(Objective paper is set for 20 bits)

Total

20 Marks

10 Marks

30 Marks

Final Internal marks for a total of 30marks shall be arrived at by considering the marks secured

by the student in both the mid examinations with 80% weight-age to the better mid exam and

20% to the other.

SUMMATIVE ASSESSMENT

End Semester Examination in all units is conducted for 70

Marks

70 Marks

Grand Total 100 Marks

IV. Course Objectives

1. To understand the software life cycle models.

2. To understand the software requirements and SRS document.

3. To understand the importance of modeling and modeling languages.

4. To design and develop correct and robust software products.

5. To understand the quality control and how to ensure good quality software.

6. To understand the planning and estimation of software projects.

7. To understand the implementation issues, validation and verification procedures.

8. To understand the maintenance of software

V. Course Outcomes

1. Acquire Knowledge about different fundamental software process models.

2. Define and develop a software project from requirement gathering to

implementation.

3. Obtain knowledge about design principles and practices of software engineering.

4. Focus on the fundamentals of modeling and testing a software project.

5. Gain knowledge about estimation and maintenance of software systems

VI. Program Outcomes:

a. An ability to apply knowledge of computing, mathematical foundations, algorithmic

principles, and computer science and engineering theory in the modeling and design of

computer-based systems to real-world problems (fundamental engineering analysis skills)

b. An ability to design and conduct experiments, as well as to analyze and interpret data

(information retrieval skills)

c. An ability to design , implement, and evaluate a computer-based system, process,

component, or program to meet desired needs, within realistic constraints such as

economic, health and safety, manufacturability, and sustainability (Creative Skills)

d. An ability to function effectively on multi-disciplinary teams (team work)

e. An ability to analyze a problem, identify, formulate and use the appropriate computing

and engineering skills for obtaining its solution (engineering problem solving skills)

f. Obtaining the knowledge of algorithmic skills regarding data structures. (program

oriented skills)

g. An ability to communicate effectively both in writing and orally (speaking / writing

skills)

h. The broad education necessary to analyze the local and global impact of computing and

engineering solutions on individuals, organizations, and society (engineering impact

assessment skills)

i. Recognition of the need for, and an ability to engage in continuing professional

development and life-long learning (continuing education awareness)

j. A Knowledge of structural skills which are related to theoretical skills for programming

(detailed subject oriented skills).

k. An ability to use current techniques, skills, and tools necessary for computing and

engineering practice (practical engineering analysis skills)

l. An ability to apply design and development principles in the construction of software and

hardware systems of varying complexity (software hardware interface)

m. An ability to recognize the importance of professional development by pursuing

postgraduate studies or face competitive examinations that offer challenging and

rewarding careers in computing (successful career and immediate employment)

Syllabus

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTHAPURAMU

COLLEGE OF ENGINEERING (AUTONOMOUS) :: PULIVENDULA

Regulation –R15

B.Tech. III Year –I Sem (C.S.E) L T P C

 4 0 0 4

SOFTWARE ENGINEERING

UNIT I

Software and Software Engineering: The Nature of Software, The Unique Nature of Web

Apps, Software Engineering, Software Process, Software Engineering Practice, Software Myths.

Process Models: A Generic Process Model, Process Assessment and Improvement, Prescriptive

Process Models, Specialized Process Models, The Unified Process, Personal and Team Process

Models, Process Terminology, Product and Process, Agile Process model, Extreme

Programming, A comparison of different process models.

UNIT II

Software Project Planning and Management: Responsibilities of a Software Project Manager,

Project Planning, Metrics for Project Size Estimation, Project Estimation Techniques, Empirical

Estimation Techniques, COCOMO-A Heuristic Estimation Technique, Halstead‘s Software

Science-An Analytical Technique, Staffing Level Estimation, Scheduling, Organization and

Team Structures, Staffing, Risk Management, Software Configuration Management

UNIT III

Understanding Requirements: Requirements Engineering, Establishing the Groundwork,

Eliciting Requirements, Requirements Analysis, Structured Analysis, Data Oriented Analysis,

Object oriented AnalysisDeveloping Use Cases, Building the Requirements Model,

NegotiatingRequirements, and Validating Requirements.

Requirements Modeling: Requirements Analysis, Scenario-Based Modeling, UML Models

That Supplement the Use Case, Data Modeling Concepts, Class-Based Modeling.

UNIT IV

Design Concepts: Design within the Context of Software Engineering, Design Process, Design

Concepts, The Design Model, Function oriented software design, Object oriented software

development.

Architectural Design: Software Architecture, Architectural Genres, Architectural

Styles,Architectural Design.

Component-Level Design: What is a Component, Designing Class-Based Components,

Conducting Component-Level Design, Component-Level Design for WebApps

UNIT V

User Interface Design: The Golden Rules, User Interface Analysis and Design,

InterfaceAnalysis, Interface Design Steps, Design Evaluation.

Coding and Testing: Coding, Code Review, Software Documentation, Testing, Testing in the

Large versus Testing in the Small, Unit Testing, Black-Box Testing, White-Box Testing,

Debugging, Program Analysis Tools, Integration Testing, Testing Object-Oriented Programs,

System Testing, Some General Issues Associated with Testing.

Software Maintenance: Characteristics of Software Maintenance, Software Reverse Engineering,
Software Maintenance Process Models, Estimation of Maintenance cost.

TEXT BOOKS :

1. Software Engineering A practitioner's Approach, Roger S. Pressman, Seventh Edition,

2009, McGrawHill International Edition.

2. Fundamentals of Software Engineering, Rajib Mall, Third Edition, 2009, PHI

REFERENCE BOOKS:

1. Software Engineering, Ian Sommerville, Ninth edition, Pearson education.

2. Software Engineering : A Primer, Waman S Jawadekar, Tata McGraw-Hill, 2008

3. Software Engineering, A Precise Approach, Pankaj Jalote, Wiley India, 2010.

4. Software Engineering, Principles and Practices, Deepak Jain, Oxford University Press.

5. Software Engineering1: Abstraction and modeling, Diner Bjorner, Springer

International edition, 2006.

6. Software Engineering2: Specification of systems and languages, Diner Bjorner,

Springer International edition , 2006.

7. Software Engineering Foundations, Yingxu Wang, Auerbach Publications, 2008.

8. Software Engineering Principles and Practice, Hans Van Vliet, 3rd edition, John Wiley

&Sons Ltd.

9. Software Engineering 3: Domains, Requirements,and Software Design, D.Bjorner,

Springer International Edition.

10. Introduction to Software Engineering, R.J.Leach, CRC Press.

VII. Course Plan:

Lecture

No
Course Outcomes Topics to be Covered Reference

UNIT – I

1-2

Acquire Knowledge on

the fundamental

characteristics of

Software

Software and Software

Engineering:

The Nature of Software, The

Unique Nature of Web Apps,

Software Engineering,

T1: Chapter 1, 1.1 -1.3

R1: chapter 1, 1.1, 1.2

3-4

An Understanding of

software process and

Myths

Software Process, Software

Engineering Practice,

Software Myths.

T1: Chapter 1, 1.4 -1.6

R4: chapter 1, 1.8,

5-6

Obtain Knowledge on

various Perspective

process models

Process Models:

A Generic Process Model,

Process Assessment and

Improvement, Prescriptive

Process Models (incremental

Process models)

T1: Chapter 2, 2.1 -2.3.2

T2: Chapter 2, 2.2

R1:chapter 2,2.1

R4 : chapter 2, 2.2, 2.3

7-8

An Understanding of

Specialized and Unified

process models

Prescriptive Process Models

(evolutionary Process

models), Specialized Process

Models, The Unified Process

T1: Chapter 2, 2.3.3 -2.5

T2:Chapter 2, 2.3-2.5

9-10
Ability to demonstrate

team work

Personal and Team Process

Models, Process Terminology,

Product and Process.

T1: Chapter 2, 2.5 -2.8

UNIT – II

11-12

Obtain Knowledge on

the roles and

responsibilities of

software project

manager

Software Project

Management: Responsibilities

of a Software Project Manager,

Project Planning, Metrics for

Project Size Estimation

T2: Chapter 3, 3.1-3.4

T1: Chapter 25, 25.2

R1:chapter 22 22.1, 22.2

R2: chapter 5

13-14

Ability to apply project

estimation techniques

on real world problems

Project Estimation Techniques,

Empirical Estimation

Techniques, COCOMO-A

Heuristic Estimation

Technique,

T2: Chapter 3, 3.5-3.7

T1: Chapter 26, 26.7

15-16

Ability to assess the

resource requirement

and schedules of the

project

Halstead‘s Software Science-

An Analytical Technique,

Staffing Level Estimation,

Scheduling

T2: Chapter 3, 3.8-3.10

T1: Chapter 26, 26.9

17-18 Acquire knowledge on
Organization and Team

Structures, Staffing, Risk
T2: Chapter 3, 3.11-3.14

the software

configuration

management

Management, Software

Configuration Management

UNIT – III

19-20

Gain Knowledge on the

process of Requirement

Engineering

Understanding

Requirements: Requirements

Engineering, Establishing the

Groundwork, Eliciting

Requirements,

T1: Chapter 5, 5.1 -5.3

T2: Chapter 4, 4.1

21-22

Apply Creative skills in

developing

Requirement

Engineering Models

Developing Use Cases,

Building the Requirements

Model,

T1: Chapter 5, 5.4 -5.5

23-24
Ability to Validate

Requirements

Negotiating Requirements,

Validating Requirements
T1: Chapter 5, 5.6 -5.7

25-26
Analyze Requirements

for modeling use cases

Requirements Modeling:

Requirements Analysis,

Scenario-Based Modeling,

UML Models That Supplement

the Use Case

T1: Chapter 6, 6.1 -6.3

T2: Chapter 7, 7.4

27-28

An Understanding of

data based modeling

and class based

modeling

Data Modeling Concepts,

Class-Based Modeling
T1: Chapter 6, 6.4 -6.5

UNIT - IV

29-30
Ability to Understand

Basic Design Process

Design Concepts: Design

within the Context of

Software Engineering, Design

Process, Design

Concepts(modularity)

T1: Chapter 8, 8.1 -8.3.5

31-32

Obtain Knowledge on

basic design concepts

and models

Design Concepts, The Design

Model
T1: Chapter 8, 8.3.5 -8.4

33-34

An Understanding of

various architectural

types

Architectural Design:

Software Architecture,

Architectural Genres

T1: Chapter 9, 9.1 -9.2

T2: Chapter 5, 5.1-5.31

R1: chapter 6,6.1, 6.2

35-36

Ability to design

software architecture

based on client needs

Architectural Styles,

Architectural Design.
T1: Chapter 9, 9.3 -9.4

37-38 Gain Knowledge on Component-Level Design: T1: Chapter 10 , 10.1-

component based

software development

process

What is a Component,

Designing Class-Based

Components

10.2

T2: Chapter 5, 5.6

39-40

Ability to design

architecture for web

applications

Conducting Component-Level

Design, Component-Level

Design for WebApps

T1: Chapter 10 , 10.3-

10.4

UNIT – V

41-42

An understanding of

rules for User Interface

Design

User Interface Design: The

Golden Rules, User Interface

Analysis and Design

T1: Chapter 11 , 11.1-

11.2

T2: Chapter 9, 9.2

43-44
Ability to design and

user interface

Interface Analysis, Interface

Design Steps

T1: Chapter 11 , 11.3-

11.4

T2: Chapter 9, 9.5

45-47

Obtain Knowledge on

design evaluation

process

Interface Design Steps (cntd),

Design Evaluation

T1: Chapter 11 , 11.4 -

11.6

48-51
Ability to conduct code

review

Coding and Testing: Coding,

Code Review, Software

Documentation, Testing

T2: Chapter 10, 10.1-10.3

52-54

Obtain skills to

conduct testing on

software

Testing in the Large versus

Testing in the Small, Unit

Testing, Black-Box Testing,

White-Box Testing

T2: Chapter 10, 10.4-10.7

T1: Chapter 18,18.3

55-57
Ability to analyze and

debug a program

Debugging, Program Analysis

Tools, Integration Testing,

T2: Chapter 10, 10.8-

10.10

T1:Chapter 17, 17.3

58-60
Ability to test Object

oriented Programs

Object-Oriented Programs,

System Testing, Some General

Issues Associated with Testing.

T2: Chapter 10, 10.11-

10.13

T1: Chapter 19,19.2

VIII. Mapping Course Outcomes leading to the achievement of Program Outcomes:

Course

Outcomes

Program Outcomes(PO's)

A B c d e F g h i J k l M

(CO's)

1 H H H S S H S

2 H S S S H S

3 S H S S S H S

4 S S H S

5 S H

S = Supportive H = Highly Related

Justification of Course Syllabus Covering Course Outcomes:

 By covering the syllabus, student would be able to acquire knowledge about different

conventional software process models and could be able to design and develop software

by following certain design principles for real world problems.

Justification of Course Outcomes and Program Outcomes Mapping Table:

 CO-1 is highly related to PO's - a, c, e and k and acts as a supportive for PO's - g,

j and m such that Student can be able to gain knowledge on different software

process models which helps them in developing the software for real world

problems. It also helps them to communicate effectively in team meetings.

 CO-2 is highly related to PO's - b, l and acts as a supportive for PO's - c, e, f and

m such that the student will be able to analyze the requirements in solving the

various problems that helps in the development of efficient software.

 CO-3 is highly related to PO's - c, l and acts as a supportive for PO's - b, e, j, k

and m such that the student gains the knowledge regarding the thumb rules of

designing software and will be able to apply those principles in software

development.

 CO-4 is highly related to PO - k and acts as a supportive for PO's - a, c and l such

that the student will be able to apply various testing techniques on a software to

analyze the quality of the software and validate the requirements

 CO-5 is highly related to PO - H and acts as a supportive for PO's - G such that

the student will be able to assess the cost of software development and take

necessary measures in maintaining software at Organizational level

